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Abstract

In this paper, we propose a novel approach to finding and predicting anoma-
lous network states based on a flow monitoring mechanism. We assume that
number of active flows can show a real network state. Moreover, the de-
pendence between flow number and link utilisation allows us to derive an
equation for the confidence interval on high-loaded network links. Experi-
ments have been conducted that confirmed the basic position of the model
and identified the anomaly network states. A software package based on this
model has been created that allows the prevention of DDoS attacks. For
successful operation of this software the number of active flows that single
IP address can generate has been analysed.



1 Introduction

With the growth of the global network and number of tasks, the risk of
malicious intrusions is snowballing in the network. Hackers are constantly
improving network attack technologies. Intrusion prevention is one of the
most important challenges facing those who research the networks.

In order to resist an intrusion successfully as well as to detect the IP
address source, enough time to detect the start of the intrusion is needed.
There are many papers dedicated to detection and prevention of network
intrusions, but it has only recently been discovered how to detect intrusions
at the flow level [19, 20]. In this paper, we attempt to describe a flow-based
application traffic model, which is the basis for diagnostic of troubleshooting
on backbone links.

Our contribution lies in the fact that the real network state of the back-
bone link is described by two parameters: the number of active flows and
link utilisation.

For management of the connection quality in IP networks, several recent
proposals [5] refer to use of flow oriented architecture.

A network flow has been defined in many ways [4]. The traditional Cisco
definition is to use a 7-tuple key, where a flow is defined as a unidirectional
sequence of packets sharing all of the following 7 values:

e Source [P address
e Destination IP address
e Source port for UDP or TCP, 0 for other protocols

e Destination port for UDP or TCP, type and code for ICMP, or 0 for
other protocols

e [P protocol
e Ingress interface (SNMP ifIndex)
e [P Type of Service

The basic principle of flow-aware networking relies on the fact that flows
are elementary entities associated with user behavior [11, 13]. In order to
provide an acceptable network quality to end users, it is important to take
flows into account [3, 16] as key parameters of sharing network bandwidth.
To efficiently implement flow aware resource management techniques, it is
essential to estimate the number of flows which are active on a link in an
operational network [1, 7].



In this paper, the analytical traffic model is constructed to diagnose net-
work errors on the flow level. The reasons for the occurrence of network
defects can vary; for example: hardware problems, insufficiency of available
bandwidth, network attacks such as distributed denial-of-service (DDoS) and
port scanning [14, 18]. It should be noted that the network state of a link is
described by two parameters: network utilisation and number of active flows.

Barakat et al [2] propose a model that relies on flow-level statistics to
compute the total (aggregate) rate of data observed on an IP backbone link.
For modelling purposes, the traffic is viewed as the superposition (i.e., mul-
tiplexing) of a large number of flows which arrive at random times and stay
active for random periods.

Our paper presents a technique for estimation of the network behaviour
based on the utilisation curve, which represents the correlation between link
utilisation and the number of active flows in it. It is supposed that the
number of active flows may be considered as the real network state [1, 18].

The utilisation curve defines key parameters of the network: length of
operational region, mean flow performance, confidence interval, points of
overload, etc. Based on data received from large enterprise networks [10, 15],
we will try to discover possible bottlenecks [8] and find a threshold point,
where the number of arriving flows doesn’t increase link utilisation.

In order to prove our hypothesis, measurements from the border gate-
way routers of Russian internet service provider (ISP) FREEnet were made.
FREEnet (The Network For Research, Education and Engineering) is an
academic and research network. The total capacity of the upstream links is
approximately 2.1 Gbps, 1.8 Gbps. These links interconnect FREEnet with
its peers (excluding FREEnet members).

We also used data from the border gateway routers of Russian ISP Sama-
raTelecom (ST), from HEAnet - Ireland National Research and Education
Network, and from Samara State Aerospace University (SSAU).

This paper describes a simple flow-based model [1, 2] which can be used
for networking monitoring and estimating quality of backbone links. We
present our findings under the following headings:

e Section 2 - the review of related work

Section 3 - operating region of network

Section 4 - a test for network quality

Section 5 - diagnostic of network states

Section 6 - results from experiments



e Section 7 - traffic parameters for the model of DDoS attacks prevention

2 Previous study

In this paper traffic is considered as a stationary process, using the results
from the papers of Barakat et al [2] and Ben Fredj et al [3]. They proposed a
traffic model for uncongested backbone links that is simple enough to be used
in network operations and engineering. The model used by Barakat et al relies
on Poisson shot-noise. With only three parameters (A, arrival rate of flows,
E[S,], average size of a flow, and E[S2/D,], average value for the ratio of the
square of a flow size and its duration), the model provides approximations
for the average of the total rate (the throughput) on a backbone link and
for its variations at short timescales. The model is designed to be general
so that it can be easily used without any constraints from the definition of
flows, or on the application or the transport protocol.

Define B(t) as the total rate of data (e.g., in bits/s) on the modelled link
at time t. It is determined by adding the rates of the different flows. We can

then write
B(t) =Y X.(t—T,) (1)
nez
The process from Eq. (1) can describe the number of active flows N found
at time ¢t in an M /G /oo queue [12], if X,,(t —T,,) =1 at t € [T,,, T, + D,].
The model presented by Barakat et al [2] can compute the average and
the variation of traffic on the backbone. In summary:

e The average total rate of the traffic is given by the two parameters A
and E[S,,]:
E[B(t)] = AE[S,] (2)

e The variance of the total rate V[B(t)] (i.e., burstiness of the traffic) is
given by the two parameters A and E[S?/D,,]:

V[B(1)] = AE[S,/Dy)] (3)

It should be mentioned that Eq. (2) is true only for the ideal case of a
backbone link of unrestricted capacity, which can be applied to underloaded
links. The main drawback of the ratio (2) is its lack of definite usage limits,
due to the fact that the variables A\, E[S,] describing the system are in no
way connected with its current state. The average flow size E[S,] does not
depend on a specific system; it is a universal value determined by the current
distribution of file sizes found in the Internet.



The arrival rate of flows A describes the user’ s behaviour, and doesn’ t
depend on the network state and utilisation. The cumulative number of flows
that arrive at a link will remain linear even if the network has problems and
doesn’ t satisfy all the incoming demands.

In order to describe the real network state with an arbitrary load we
should use Little’ s law:

N = \E[D,)] (4)

Here, E[D,] is the mean duration of flow and N is the mean number of
active flows. Formula (4) is true for any flow duration [12] and thus for an
arbitrary flow size distribution and rate limit. This formula describes the
network state more precisely than Eq. (2), as the average number of active
flows on the bandwidth unit increases with the utilisation. In other words,
the average duration of flow E[D,] enables us to judge the real network state
in contrast to its average value E[S,,].

3 Operating region of the network

In order to analyse the connection quality at the backbone area or the link to
the provider we are going to investigate a graphical dependence between the
link utilisation U and the number of active flows N in it [1]. These variables
are easily measurable quantities in spite of the average values E[D,] and
E[S,]. The separate network state is pictured by single point on a coordinate
plane with axes N and U. The curve depicting average values has been shown
in Fig. 1.

On the curve shown in Fig. 1, three parts can be identified, correspond-
ing to the different network states [17]. The first part of the curve describes
the network state close to the ideal. If the investigated link has unrestricted
capacity, there should be a stable linear relationship between the number of
flows N and link utilisation U. The curve describing the network behavior
beyond a certain point will be convex. The linear part of the curve corre-
sponding to the ideal network behaviour is defined as the operational region.
The operational region ends at the threshold point which should be found
experimentally. The dislocation of this point depends on many factors, such
as transport layer protocol, network topology, the amount of buffering at the
link, etc.

The second part of the curve corresponds to the moderately loaded net-
work, when the diversion from the ideal network state becomes obvious.
There is an increase in the average duration of a flow compared to the work-
ing area, and therefore, a larger number of active flows on the bandwidth
unit characteristic of this network state.



The third part of the curve corresponds to the totally disabled network,
with considerable packet loss evident. We propose some simple preliminary
models for an overloaded link, accounting for user impatience and reattempt
behaviour. In a real network, if demand exceeds capacity, the number of
flows in progress does not increase indefinitely. As flow throughput decreases,
some flows or sessions will be interrupted, due either to user impatience or
to aborts by TCP or higher layer protocols.

In this section, estimation of the confidence interval is given for the opera-
tional region of our curve. Since the total rate is the result of the multiplexing
of N(t) flows of independent rates, the Central Limit Theorem [12] tells us
that the distribution of B(t) tends to normal (Gaussian) at high loads, which
is typical of backbone links.

It should be noted that the statement about normal distribution is reason-
able for networks in which there are no significant deviations. For example,
such deviations include disabling external or internal links, a DDoS attack
to the network, or port scanning. For such anomalous situations, the distri-
bution of B (t) no longer tends to Gaussian. In this case, consistent points
of the network state will go beyond the confidence intervals. A method of
detecting network anomalies could be based on this principle [9].

As is mentioned in Section 2, the variance of the total rate requires two
parameters: the arrival rate of flows A and the expectation of the ratio
between the square of the size of a flow duration E[S2/D,] (see Eq. 3).
This tells us that the total rate should lie between E[B] — A(e)4/V(B) and
E[B]+ A()4/V(B) in order to provide the required quality of service. When
we talked about the required quality of service we implied the accordance of
network behavior to Eq. (2) - here A(¢) is the e-quantile of the centered and
normalised total rate B(t).

Taking into account Eqs. (2-4) and theorems about average values, the
confidence interval of the bandwidth B on an operational region of our curve
is

B = b(N £ aA(e)VN). (5)

Here, b = E[S,,/D,] is the average flow performance which characterises the
speed of user communication. Coefficient a could be found experimentally.

In the event of a network anomaly, two or more sequential measurements
will exceed the confidence intervals, which are easy to find using diagnostic
tools.

In our recent work, emulation of DDoS attacks has been carried out us-
ing the network tool LOIC [9]. The test shows that the number of active
flows increases greatly when network utilisation is low. We have developed
a utility that allows us to determine the start of the attack and to allocate



the IP addresses from which it takes place. In this case, intrusion detection
technique is based on the measuring of active flows from single IP address
which is under test (See Section 7).

4 Testbed Setup

In order to prove our hypothesis measurements were made on border gateway
routers from FREEnet, HEAnet - Ireland’ s National Research and Educa-
tion Network, from the Russian ISP SamaraTelecom (ST), and also from
Samara State Aerospace University (SSAU) network. All networks have sev-
eral internal and external links. ST’ s basic load lies on one channel to the
Internet, whereas HEAnet and FREEnet relies on a number of connections.
Measurements from Gigabit links were taken for FREEnet and 155 Mbps,
622 Mbps are for HEAnet and ST. The utilisation of these links varies widely
from 5% to 60% with a clearly identifiable busy period.

A passive monitoring system based on Cisco’ s NetFlow [6] technology was
used to collect link utilisation values and active flow numbers in real-time.
In Moscow and Samara we measured on a Cisco 7206 router with NetFlow
switched on. At HEAnet a Cisco 12008 was utilised. A detailed description
of Cisco NetFlow can be found in the Cisco documentation [6].

This is achieved using the following commands on the Cisco 7206:

e sh ip cache flow - gives information about the number of active and
inactive flows; about the parameters of the flows in the real time.

e show interface summary - gives information about the current link uti-
lization.

On a GSR Router these commands look like:
e enable

e attach slot-number

e show ip cache flow

The FREEnet data was obtained using scripts running every 30 minutes
from the middle of January to the end of March 2008. The data sets from
two routers of FREEnet have been collected for further analysis. The full
loading of the routers varies in limits of hundreds of megabits per second (100-
220 Mbps) for the first router and tens of megabits for the second router (see
Fig. 5). During the tests we fixed information about any network events that
could have an influence on connection quality. The ST data was recorded at
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30-minute intervals, twenty-four hours a day for a week, to discover network
behaviour with different loading levels. The HEAnet data was obtained using
scripts running every 5 minutes for a period of 72 hours. It is quite easy to
write a script which will collect the data from the router to the management
server.

5 Diagnostic of network states

In order to perform experimental testing of our model, the data set needed to
be divided into several intervals depending on number of active flows. Inside
each interval, the average values and their variance were calculated for flow
performances as well as for other parameters characterising network states.

The earlier tests have been conducted on the boundary routers of ST and
HEAnet, and they didn’ t allow verification of the model with high precision.
The new data from FREEnet contains thousands of points describing network
states.

FREEnet Data Set 1 has been divided into seven intervals according
to the number of active flows (15000 - 20000, 20000 - 25000, 25000 - 30000,
30000 - 40000, 50000 - 60000, >60000). Inside each interval, basic parameters
characterising active flows have been calculated, and the result is represented
in Table 1. Here, N is the average number of active flows for the interval
denoted by n. B describes the average router loading in Megabits per second
(Mbps), and b is average flow performance measured in bits per second (bps).
o(b)ando(B) are the standard deviations for flow performance b and router
loading B respectively.

The results of the measurement for FREEnet Data Set 1 are pictured in
Fig. 2. A basic curve is constructed as the line of average values; it describes
network states on flow level. The error bar restricts the confidential interval
for network states. Comparison with the theoretical prediction from Section 2
leads to the conclusion that the area of network exploitation lies inside the
operational region.

In order to restrict the operational region, the straight portion of the
curve from Fig. 2 should be marked as shown in Fig. 3. The sloped angle
of this straight line is found as the average flow performance b. Only three
initial points from the investigated data set may be placed in the limits
of the operational region. The angle of inclination gives an average flow
performance equal to 5700 bps for FREEnet. If the number of flows exceeds
30000, then the network gets moderately loading which leads to a reduction
in the flow performance. The router loading does not increase uniformly with
the number of requests, and the connection quality becomes almost twice as



bad (see Table 1).

In the conclusion of this section it should be noted that expression (5)
allows formulation of the easy rule of how to display the network defects. If
two consistent measurements running every 5(30) minutes give the deviation
of the real network states B;, N; from the confidence interval with A(0.05),
then a network problem has been detected. The confidence interval is de-
scribed by flow performance b and the values «, (B) which may be found
only as result of data processing.

This rule received an apt illustration during FREEnet network testing.
A network incident has been detected: a wide number of links to a large
FTP server have been temporarily turned down. These anomaly network
states B;, N; depart from the confidence interval corresponding to standard
behaviour of the investigated network, and form a separate cluster as shown
in Fig. 6.

So our model receives the experimental confirmation and the diagnostic
method based on introduction of the confidence interval may be applied to
network monitoring.

6 Statistical tests

The network state at every instant can be described by a point on a two-
dimensional plot where abscise shows the number of active flows N and
ordinate shows router loading B. Basic tasks of experimental validation of
our model consist of

e construction of curve of average values and comparison with the theo-
retical prediction shown in Fig. 1

e calculation of variance for flow performances and verification of the
parabolic form of the confidence interval from Eq. (5)

e examination on normal distribution for flow performances in the ab-
sence of network state deviation.

In Table 2, the Data Set 2 from the second router of FREEnet with
lower loading is presented. The investigated region divides into six intervals
according to the number of active flows (5000 - 6000, 6000 - 7000, 7000 -
8000, 9000 - 10000, >10000). The operational region for the second router
of FREEnet is restricted by 10 000 active flows, as shown in Fig. 4. Only
the last intervals should be excluded from the straight portion of utilisation
curve.



Fig. 5 illustrates the network states and the form of the confidence interval
for an operation region with normal quantile function A(e),e = 0.05.

A correlation coefficient indicates the strength and direction of a linear
relationship between two random variables. In order to verify the parabolic
form of the confidence interval the correlation coefficient between variables
o;(B) and /N; should be calculated for both data sets of FREEnet (see
Tables 1 and 2). Comparing the second and fourth columns of the afore-
mentioned tables, the correlation coefficient values are equal to 0.70 for Data
Set 1 and 0.93 for Data Set 2. These magnitudes allow us to discuss high
correlation between the theoretical model and its experimental examination.

A significant question concerns the numerical value for the numerical
coefficient ay, s from Eq. (5). The function A(e) can be computed using
the Gaussian approximation, which gives, for example, A(0.05) = 1.96. Our
data from Tables 1 and 2 allow calculation of their magnitudes:

o = 13, a0 = 4.5 (6)

Significant assumption underlies a theoretical model that distribution of
flow performances b may be considered as a Gaussian distribution. The
number of testing network states inside many intervals from Tables 1 and 2
allow us to check a given set for similarity to the normal distribution. Here,
we use the Pearson y? test, the results of which can be found in Tables 3
and 4. Column 2 shows the value of x? for a = 0.95; table values for x? are
shown in round brackets. It should be noted that all investigated intervals
with a sufficient number of states discover the normal type of distribution.

7 Traffic parameters for the model of DDoS
attacks prevention

This section discusses the number of completed flows, which IP addresses gen-
erate during normal activity, at a time when there is no outside intrusion.
During the attack, the number of completed flows amounts to several thou-
sand per minute from a single attacker’ s address. Samara State Aerospace
University developed and launched a set of utilities for protection against
DDoS attacks. This method is based on a flow traffic model, presented in
this paper.

The principle of attack detection is that the number of flows increases
drastically at constant link utilisation during the attack. The purpose of this
section is to clarify the traffic parameters that are used in software to prevent
attacks. Two parameters are most important; namely the maximum number



of active flows that a single IP address can generate and type of distribution
of the number of flows from single IP address, ranked by popularity. It
should be noted that the software collects statistics once per minute and all
the analysed data is of this time interval. Netflow statistics was used to find
the parameters from the boundary router of SSAU. The results are shown in
Figs. 7-9.

A typical graph of the distribution of active flows from a single IP address,
ranked by popularity, is shown in Fig. 7. The number of active flows NV; and
the sequence number ¢ of the addresses in the ranked list are plotted on a
logarithmic scale. Points on the graph lie on a straight line, suggesting that
the distribution conforms with Zipf’s law [21]:

N; =N, /i (7)

To find the maximum number of active flows per single IP address, statis-
tics for the week have been analysed. The resulting graph is shown in Figs. 8
and 9. The x-axis displayed the time in minutes since the beginning of ob-
servation; the vertical axis represents the maximum number of flows Nj.

Graphs in Figs. 8 and 9. show that the maximum number of flows from
single IP address does not exceed 100 for the server 91.222.129.201 and not
more than 20 for 91.222.128.200 during normal network activity.

For the future we are planning to make the intrusion prevention system
(IPS) to defend against DDoS for public data centers. The major parameters
of this software include:

e sFlow protocol instead of NetFlow

e JAVA application (for use in the Linux operating system), which will
also handle the statistics obtained directly from the router without any
intermediate agents.

e firewall iptables

The foundation of the software under development will be based on the
traffic model, which describes the state of the network by two parameters:
the number of active flows and link utilisation. When two sequential mea-
surements go beyond the confidence interval an error message will display.

8 Conclusion

In this paper we showed that simple modelling methods can estimate a qual-
ity of links and predict an appearance of bottlenecks in large networks. At
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the moment we are working on developing utilities, which will make it possi-
ble to construct the dependence of link loading on the number of active flows
automatically, define attacks and calculate the length of the operation region
as well as coefficients for the confidence interval.

This paper has demonstrated that it is possible to easily determine the
confidence interval, operation region and the overload point of a network
connection, utilising low cost hardware and simple software. This allows
us to identify the anomaly network states including network attacks and
the moment when a backbone upgrade is required. Further experiments
are necessary in order to develop software utilities for this purpose. Thus,
providing analytical generalisations, we established common terminology for
processes, taking place in networks.
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Table 1: Parameters for active flows of FREEnet, Data Set 1, 2008
n| N B, |a(B),| b, |o(b),
Mbps | Mbps | bps | bps
17489 | 113.1 | 23.1 | 6784 | 1386
23260 | 126.0 | 21.4 | 5682 | 965
27007 | 152.0 | 39.2 | 5628 | 1452
34902 | 156.7 | 26.9 | 4990 | 770
45104 | 163.9 | 33.9 | 3634 | 752
55019 | 176.3 | 33.2 | 3205 | 604
64778 | 215.4 | 42.2 | 3325 | 652

|| O x| W N~

Table 2: Parameters for active flows of FREEnet, Data Set 2, 2008
n| N B, |a(B),| b, |o(b),
Mbps | Mbps | bps | bps
5446 | 15.42 | 2.25 | 2843 | 413
6531 | 17.11 | 2.45 | 2364 | 377
7508 | 17.74 | 2.35 | 2364 | 313
8370 | 18.92 | 2.24 | 2261 | 268
9443 | 20.67 | 3.81 | 2190 | 404
15495 | 28.05 | 5.40 | 1811 | 349

O O | W N+~

Table 3: Statistical tests, Data Set 1, 2008

n x? for Gaussian | Correlation
a=0.95 test coefficient

1 | not enough data

2 | not enough data

3 | not enough data

4 3.49 (9.49) + 0.70

5 | not enough data

6 3.45 (7.81) +

7 0.50 (9.49) +
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Table 4: Statistical tests, Data Set 2, 2008

n x? for Gaussian | Correlation
a=0.95 test coefficient

1 9.15 (12.6) +

2 10.0 (11.1) +

3 3.24 (14.1) + 0.93

4 10.0 (14.1) +

5 | not enough data

6 1.94 (14.1) +

Figure 1: Link utilisation vs. the number of active flows
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Figure 3: The operational region of network, Data Set 1
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Figure 5: Confidence interval for operation region, Data Set 2 from FREEnet
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Figure 7: The number of active flows from a single IP address in descending

order
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Figure 8: The maximum number of flows from single IP address, server
91.222.129.201
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Figure 9: The maximum number of flows from single IP address, server
91.222.128.200
Nmax

700

600

500

400

300

200

100 1
0 MMMWM t, min

0 1000 2000 3000 4000 5000 6000 7000

19



